Cinema-Dining Terrace Expansion

Suburbia, USA

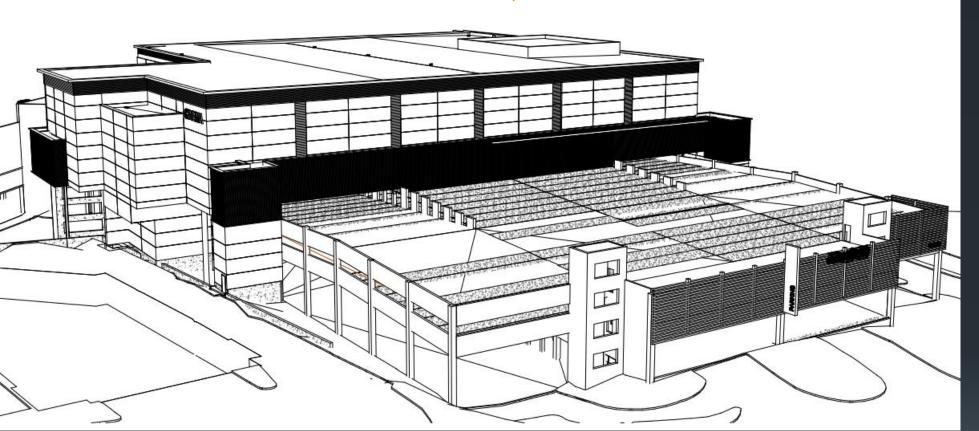


Image Courtesy of The Whiting-Turner Contracting Company

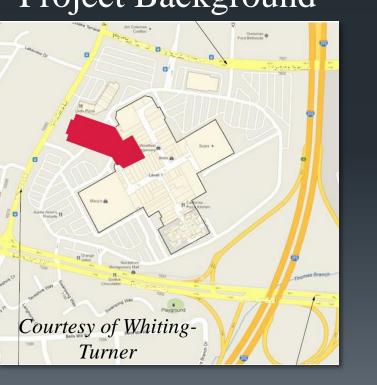
Penn State AE Senior Capstone Project Nicholas J. Kline | Construction Option Advisor | Mr. Ray Sowers

Introduction

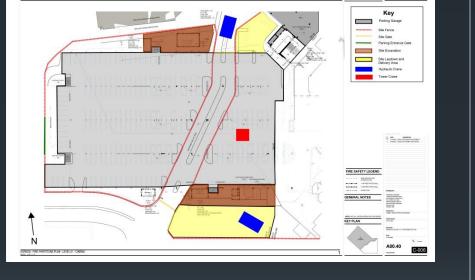
Introduction

Project Background

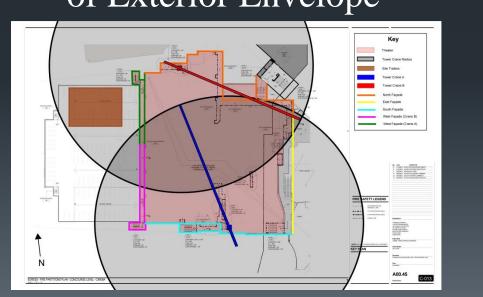
Analysis 1 | Site Logistics Analysis

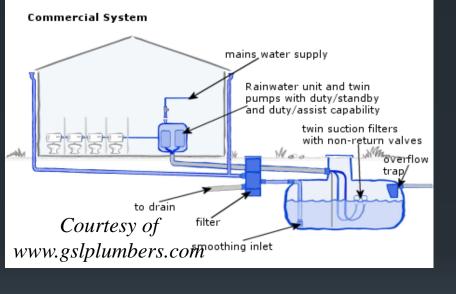

Analysis 2 | Exterior Envelope Prefabrication

Analysis 3 | Water Drainage Recycling


Conclusions and Recommendations

Acknowledgements


Project Background


Analysis 1 | Site Logistics

Analysis 2 | Prefabrication of Exterior Envelope

Analysis 3 | Water Drainage Recycling

Project Background

Nicholas Kline | Construction Option | AE Senior Thesis

Introduction

Project Background

Analysis 1 | Site Logistics Analysis

Analysis 2 | Exterior Envelope Prefabrication

Analysis 3 | Water Drainage Recycling

Conclusions and Recommendations

Acknowledgements

Building Name

Location

Building Occupant

Building Functions

Size

Number of Stories

Project Timeline

Cost

Cinema-Dining Terrace Expansion

Suburbia, USA

ArchLight Cinema

Covered Mall Building Assembly,

Business, Mercantile, Storage

91,000 GSF

70,000 sqft 16 Screen Cinema

12,000 sqft Food Court Expansion 9,500 sqft Restaurants

3 stories above grade

June 2012 – August 2014

\$50,223,763.00

Owner / Anonymous Owner

GC / The Whiting-Turner Contracting Company

Architect / Gensler

Structural Engineer / Robert Silman Associates

MEP Engineer / B&R Construction Services

Image Courtesy of The Whiting-Turner Contracting Company

Project Background

Nicholas Kline | Construction Option | AE Senior Thesis

Introduction

Project Background

Analysis 1 | Site Logistics Analysis

Analysis 2 | Exterior **Envelope Prefabrication**

Analysis 3 | Water Drainage Recycling

> Conclusions and Recommendations

Acknowledgements

Building Systems

Structural System

Foundation - Micro-piles with pile caps, sandwich footings, spread footings, and mat slabs

Structural Steel

Exterior Enclosure System

Storefront Glazing EIFS

Metal Panels

Analysis 1 | Site Logistics Analysis

Nicholas Kline | Construction Option | AE Senior Thesis

Introduction

Project Background

Analysis 1 | Site Logistics Analysis

Analysis 2 | Exterior Envelope Prefabrication

Analysis 3 | Water Drainage Recycling

Conclusions and Recommendations

Acknowledgements

Opportunity:

The current site logistics requires extensive means and methods adding to the critical schedule.

• Overview of Site Logistics

• Structural Breadth

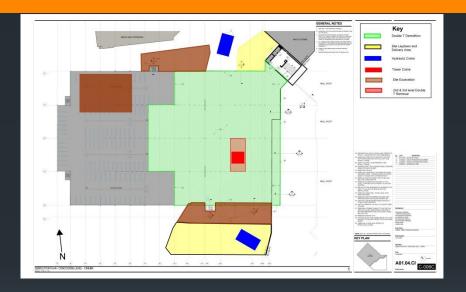
• Cost and Schedule

Introduction

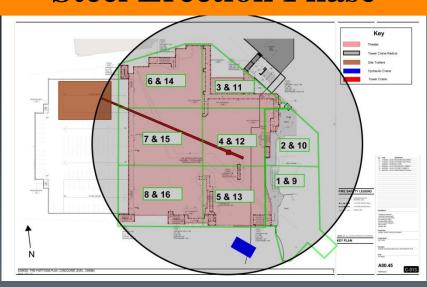
Project Background

Analysis 1 | Site Logistics Analysis

Analysis 2 | Exterior Envelope Prefabrication


Analysis 3 | Water Drainage Recycling

Conclusions and Recommendations


Acknowledgements

Current Site Logistics

Demolition Phase

Steel Erection Phase

• Overview of Site Logistics

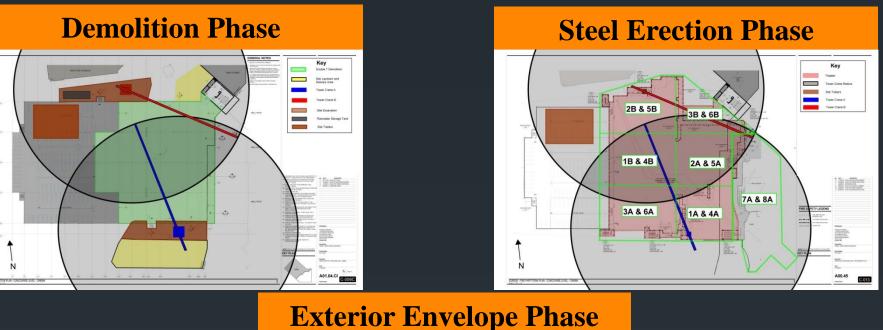
• Structural Breadth

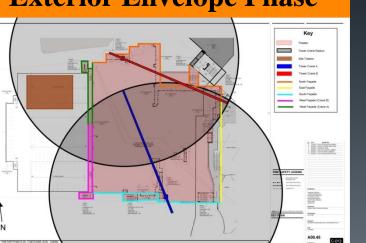
• Cost and Schedule

Introduction

Project Background

Analysis 1 | Site Logistics Analysis


Analysis 2 | Exterior Envelope Prefabrication


Analysis 3 | Water Drainage Recycling

Conclusions and Recommendations

Acknowledgements

New Site Logistics

New Site Phasing

• Overview of Site Logistics

• Structural Breadth

• Cost and Schedule

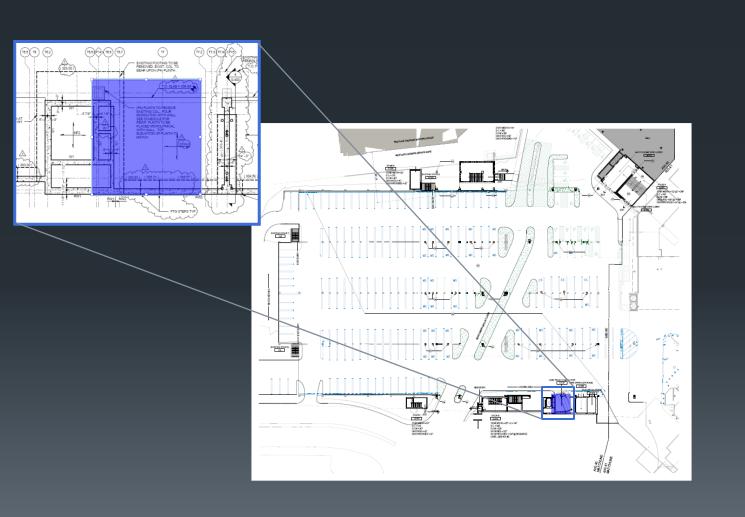
Introduction

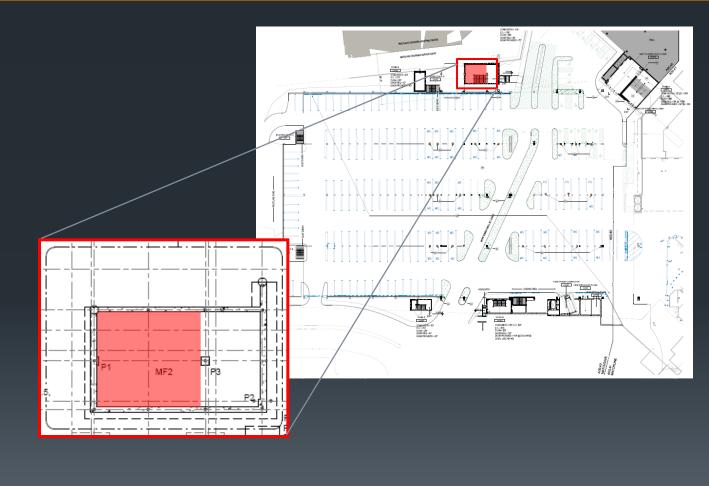
Project Background

Analysis 1 | Site **Logistics Analysis**

Analysis 2 | Exterior Envelope Prefabrication

Analysis 3 | Water Drainage Recycling


> Conclusions and Recommendations


Acknowledgements

Structural Breadth

Tower Crane A Foundation

Tower Crane B Foundation

• Overview of Site Logistics

• Structural Breadth

• Cost and Schedule

Introduction

Project Background

Analysis 1 | Site **Logistics Analysis**

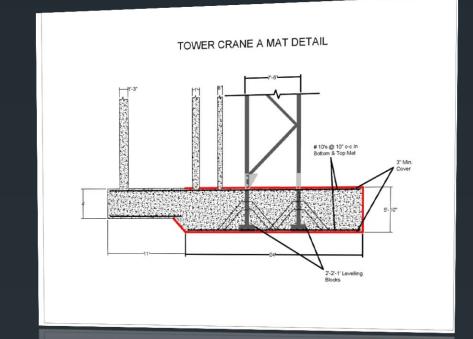
Analysis 2 | Exterior **Envelope Prefabrication**

Analysis 3 | Water Drainage Recycling

> Conclusions and Recommendations

Acknowledgements

Structural Breadth


Tower Crane A

Tower Crane Specifications

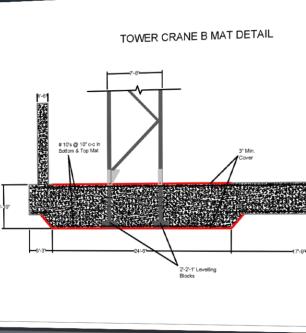
Model: Linden Comansa 21LC550

Hook Height: 136.8 ft

Jib Reach: 262.4 ft

	Fo	undation S	pecificatio	ns		
Concrete Strength (f'c)	W	L	Т	Rebar Spacing Direc	g (Both	Weight of FDN.
				Bottom	Top	
5,000 psi	22'-6"	24'-0"	5'-10"	#10@10"	#10@10"	472 kips

Nicholas Kline | Construction Option | AE Senior Thesis


Tower Crane B

Tower Crane Specifications

Model: Linden Comansa 21LC550

Hook Height: 172.9 ft

Jib Reach: 262.4 ft

	F	oundation S	Specification	ns			cja Sri, Penega
Concrete Strength (f'c)	W	L	Т	Spacin	Size & g (Both tions)	Weight of FDN.	
				Bottom	Top		
5,000 psi	24'-6"	24'-6"	5'-10"	#10@10"	#10@10"	525 kips	

• Overview of Site Logistics

• Cost and Schedule

• Structural Breadth

Introduction

Project Background

Analysis 1 | Site **Logistics Analysis**

Analysis 2 | Exterior Envelope Prefabrication

Analysis 3 | Water Drainage Recycling

> Conclusions and Recommendations

Acknowledgements

Schedules

Original Site Logistics Schedule

Original Schedu	le Summar	у	
Activities	Duration	Start	Finish
Cinema-Dining Terrace Expansion	538	1-Jun-12	8-Jul-14
Owner Internal Review/Approvals	162	1-Jun-12	29-Jul-13
Preconstruction	220	18-Sep-12	29-Jul-13
Dining Terrace Work	209	9-Jan-13	31-Oct-13
Site Work	171	10-Jan-13	12-Sep-13
Garage Demolition	56	11-Mar-13	28-May-13
Garage Expansion Substructure Area 1	101	5-Mar-13	25-Jul-13
Garage Expansion Substructure Area 2	62	5-Mar-13	30-May-13
Theater Structural Steel Erection	55	17-May-13	5-Aug-13
Dining Terrace Structure	75	3-Jun-13	17-Sep-13
Theater Service Area Structure	51	1-May-13	12-Jul-13
Stair Structure	68	17-Apr-13	23-Jul-13
Theater Roof	37	23-Jul-13	12-Sep-13
Dining Terrace Roof	26	19-Jul-13	23-Aug-13
Elevations Envelope	133	8-Jul-13	13-Jan-14
Stairway Finishes	115	12-Jun-13	21-Nov-13
Garage Rough-Ins & Finishes	229	8-Jul-13	10-Jun-14
Expansion Rough-Ins & Finishes	108	29-May-13	29-Oct-13
Theater Rough-Ins & Finishes	213	11-Jun-13	9-Apr-14
Theater Fit-Out	64	10-Apr-14	8-Jul-14
Project Completion	0		8-Jul-14

Original Duration | 538 Days

Nicholas Kline | Construction Option | AE Senior Thesis

New Site Logistics Schedule

New Schedule Summary Finish Duration Start Activities **Cinema-Dining Terrace Expansion** 1-Jun-12 12-May-14 Owner Internal Review/Approvals 1-Jun-12 29-Jul-13 18-Sep-12 29-Jul-13 Preconstruction 9-Jan-13 31-Oct-13 Dining Terrace Work 10-Jan-13 20-Sep-1 ite Work arage Demolition 25-Mar-13 28-May-1 Garage Expansion Substructure Area 1 21-Feb-13 18-Apr-13 5-Mar-13 30-May-Garage Expansion Substructure Area 2 15-Apr-13 28-May-1 Theater Structural Steel Erection Dining Terrace Structure 29-May-13 5-Aug-1 Theater Service Area Structure 15-Apr-13 24-May-1 26-Jul-1 15-Apr-13 tair Structure 18-Jul-1 Theater Roof Dining Terrace Roof 5-Aug-13 10-Sep-1 3-Jun-13 12-Sep-1 Elevations Envelope Stairway Finishes 25-Sep-1 15-Apr-13 2-May-1 Garage Rough-Ins & Finishes 29-May-13 29-Oct-13 Expansion Rough-Ins & Finishes 12-Feb-14 Theater Rough-Ins & Finishes 15-Apr-13 Theater Fit-Out 12-May-14 12-Feb-14 12-May-14 Project Completion

New Duration | 497 Days

Savings | 41 workdays 57 total days

• Overview of Site Logistics

• Cost and Schedule

• Structural Breadth

Introduction

Project Background

Analysis 1 | Site Logistics Analysis

Analysis 2 | Exterior Envelope Prefabrication

Analysis 3 | Water Drainage Recycling

Conclusions and Recommendations

Acknowledgements

Costs

Original Site logistics Costs

Original Tower (Crane Logis	stics Costs	•
Activity	Duration	Unit	Total
Tower Crane Erection	3	days	\$ 28,536.00
Demolition	15	days	\$ 249,360.00
Steel Erection (1A-6A & 1B-6B)	52	days	\$ 616,512.00
Steel Erection (7A, 8A)	47	days	\$ 306,816.00
Curtain Wall Installation	122	days	\$ 573,888.00
			\$ 1,775,112.00
Tower Crane Foundation	56	hrs	\$ 73,278.00
			\$ 1,848,390.00

New Site logistics Costs

Nicholas Kline | Construction Option | AE Senior Thesis

	<u> </u>		
New Tower Cr	ane Logisti	ics Costs	
Activity	Duration	Unit	Total
Tower Crane Erection	3	days	\$ 57,072.00
Demolition	15	days	\$ 135,360.00
Steel Erection (1A-6A & 1B-6B)	25	days	\$ 326,400.00
Steel Erection (7A, 8A)	47	days	\$ 306,816.00
Curtain Wall Installation	37	days	\$ 333,888.00
			\$ 1,159,536.00
Tower Crane Foundation A	56	hrs	\$ 74,478.00
Tower Crane Foundation B	56	hrs	\$ 80,978.00
			\$ 1,314,992.00
			\$ 1,514,992.00

Savings | \$533,398.00 Additional Savings | \$500,000.00/month = \$1,000,000.00 Total Estimated Savings | \$1,533,398.00

Analysis 2 | Exterior Envelope Prefab

Nicholas Kline | Construction Option | AE Senior Thesis

Introduction

Project Background

Analysis 1 | Site Logistics Analysis

Analysis 2 | Exterior Envelope Prefabrication

Analysis 3 | Water Drainage Recycling

Conclusions and Recommendations

Acknowledgements

Opportunity:

Stick building the exterior envelope is time consuming and labor intensive.

Analysis 2 | Exterior Envelope Prefab

Nicholas Kline | Construction Option | AE Senior Thesis

Redesign | Prefabrication

Introduction

Project Background

Analysis 1 | Site Logistics Analysis

Analysis 2 | Exterior Envelope Prefabrication

Analysis 3 | Water Drainage Recycling

Conclusions and Recommendations

Acknowledgements

• Overview of Curtain Wall

Cost and Schedule

Original | Stick Built

Image Courtesy of The Whiting Turner Contracting Company

Laborers | 8

Duration | 120 days

Materials:

- EIFS
- Framing and Sheathing

Laborers | 2

Equipment | Tower Crane

Duration | 37 days

Materials:

- EIFS Panels
- Framing and Sheathing Panels

Analysis 2 | Exterior Envelope Prefab

Original Exterior

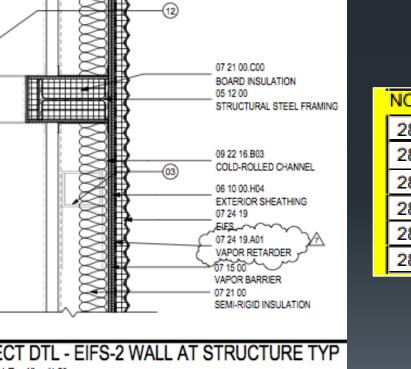
Nicholas Kline | Construction Option | AE Senior Thesis

New Site Exterior

Introduction

Project Background

Analysis 1 | Site Logistics Analysis


Analysis 2 | Exterior Envelope Prefabrication

Analysis 3 | Water Drainage Recycling

Conclusions and Recommendations

Acknowledgements

- Overview of Curtain Wall
- Cost and Schedule

NORTH ELE	EVATION	
28250	N: EXT WALL FRAMING THEATER	15
28260	N: EXT WALL SHEATHING THEATER	15
28270	N: AIR BARRIER/INSULATION	5
28280	N: VERTICAL CORROGATED METAL	5
28290	N: EIFS THEATER	20
28300	N: SMOOTH METAL PANELS	3

Largest Dryvit installer in the US

EIFS Panels | finish, framing, sheathing, air barrier, and insulation

- Accelerates enclosing the building
 - Fabrication is done to exact specifications
 - Fabrication is done in a controlled environment
 - Panels are delivered ready to install

Introduction

Project Background

Analysis 1 | Site Logistics Analysis

Analysis 2 | Exterior Envelope **Prefabrication**

Analysis 3 | Water Drainage Recycling

> Conclusions and Recommendations

Acknowledgements

• Overview of Curtain Wall

• Cost and Schedule

Schedules

Original Exterior Installation Schedule

Original Schedu	le Summar	У	
Activities	Duration	Start	Finish
Cinema-Dining Terrace Expansion	538	1-Jun-12	8-Jul-14
Owner Internal Review/Approvals	162	1-Jun-12	29-Jul-13
Preconstruction	220	18-Sep-12	29-Jul-13
Dining Terrace Work	209	9-Jan-13	31-Oct-13
Site Work	171	10-Jan-13	12-Sep-13
Garage Demolition	56	11-Mar-13	28-May-13
Garage Expansion Substructure Area 1	101	5-Mar-13	25-Jul-13
Garage Expansion Substructure Area 2	62	5-Mar-13	30-May-13
Cheater Structural Steel Erection	55	17-May-13	5-Aug-13
Dining Terrace Structure	75	3-Jun-13	17-Sep-13
Cheater Service Area Structure	51	1-May-13	12-Jul-13
Stair Structure	68	17-Apr-13	23-Jul-13
Cheater Roof	37	23-Jul-13	12-Sep-13
Dining Terrace Roof	26	19-Jul-13	23-Aug-13
Elevations Envelope	133	8-Jul-13	13-Jan-14
Stairway Finishes	115	12-Jun-13	21-Nov-13
Garage Rough-Ins & Finishes	229	8-Jul-13	10-Jun-14
Expansion Rough-Ins & Finishes	108	29-May-13	29-Oct-13
Cheater Rough-Ins & Finishes	213	11-Jun-13	9-Apr-14
Cheater Fit-Out	64	10-Apr-14	8-Jul-14
Project Completion	0		8-Jul-14

Workdays | 122 days

Duration | 133 days (8-Jul-13 to 13-Jan-14)

Nicholas Kline | Construction Option | AE Senior Thesis

New Exterior Installation Schedule

Tower	Crane A		
Activities	Duration	Start	Finish
	164	29-Jan-13	20-Sep-13
Excavations	17	29-Jan-13	20-Feb-13
FRP and Cure Foundations	17	21-Feb-13	15-Mar-13
Erect Crane	5	18-Mar-13	22-Mar-13
Demolition Level 4 Precast	15	25-Mar-13	12-Apr-13
Steel Erection - Theater	31	15-Apr-13	28-May-13
Steel Erection - Dining Terrace	48	29-May-13	5-Aug-13
Exterior Enclosure - West	6	12-Aug-13	19-Aug-13
Exterior Enclosure - South	8	20-Aug-13	29-Aug-13
Exterior Enclosure - East	9	30-Aug-13	12-Sep-13
Deconstruct Crane	5	16-Sep-13	20-Sep-13

tivities	Duration	Start	Finish
	102	29-Jan-13	24-Jun-13
cavations	17	29-Jan-13	20-Feb-13
P and Cure Foundations	16	21-Feb-13	14-Mar-13
ect Crane	5	18-Mar-13	22-Mar-13
molition Level 4 Precast	15	25-Mar-13	12-Apr-13
el Erection - Theater	31	15-Apr-13	28-May-13
terior Enclosure - North	6	3-Jun-13	7-Jun-13
terior Enclosure - West	8	10-Jun-13	17-Jun-13
construct Crane	5	18-Jun-13	24-Jun-13

Tower Crane B

Workdays | 37 days

Duration | 72 days (12-Aug-13 to 17-Jun-13)

Costs

Original Exterior Costs

Nicholas Kline | Construction Option | AE Senior Thesis

New Exterior Costs

Introduction

Project Background

Analysis 1 | Site Logistics Analysis

Analysis 2 | Exterior Envelope Prefabrication

Analysis 3 | Water Drainage Recycling

Conclusions and Recommendations

Acknowledgements

- Overview of Curtain Wall
- Cost and Schedule

Original Curtain Wall Costs Theater Shell Unit Cost Total Activity/Material 56,686 SF \$18.50 \$1,048,691.00 Exterior Metal Studs & Sheathing Grooved EIFS 8,600 SF \$12.00 \$103,200.00 48,086 SF \$9.00 \$432,774.00 **EIFS** \$1,584,665.00 Food Court Renovation Unit Cost Total Activity/Material Framing and Sheathing 13,400 SF \$13.00 \$174,200.00 **EIFS** 13,400 SF \$9.00 \$120,600.00 \$294,800.00

\$1,879,465.00

Exterior Metal Studs & Sheathing Panels | \$35.00/SF

EIFS Panels | \$45.00/SF

Total New Cost | \$2,857,955.00

• Overview of System

Mechanical Breadth

• Costs

Analysis 3 | Water Drainage Recycling

Nicholas Kline | Construction Option | AE Senior Thesis

Introduction

Project Background

Analysis 1 | Site Logistics Analysis

Analysis 2 | Exterior Envelope Prefabrication

Analysis 3 | Water **Drainage Recycling**

> Conclusions and Recommendations

Acknowledgements

Opportunity:

Rainwater recycling can add sustainability and cost savings to the project.

• Overview of System

Mechanical Breadth

• Costs

Analysis 3 | Water Drainage Recycling

Rainwater Recycling

Nicholas Kline | Construction Option | AE Senior Thesis

Introduction

Project Background

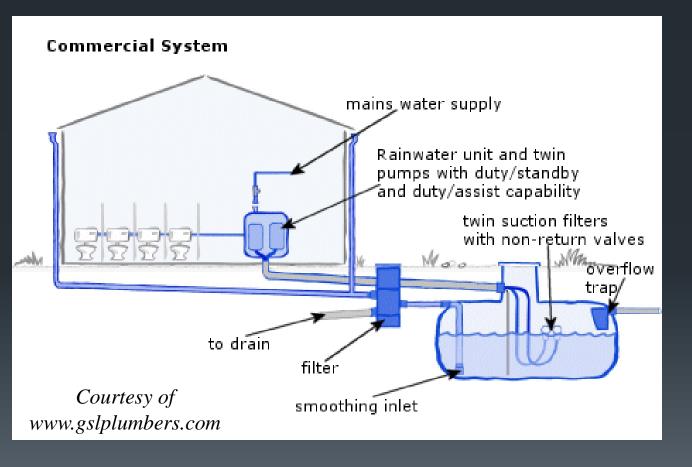
Analysis 1 | Site Logistics Analysis

Analysis 2 | Exterior Envelope Prefabrication

Analysis 3 | Water Drainage Recycling

Conclusions and Recommendations

Acknowledgements


• Free source of non-potable water

• Primary use | Toilet and Urinal Fixtures

• Equipment | Storage Tank with Accessories, Filtration system, pump system, and added piping

Large Flat Roof

Basic Commercial Rainwater Recycling System

Mechanical Breadth

Nicholas Kline | Construction Option | AE Senior Thesis

Introduction

Project Background

Analysis 1 | Site Logistics Analysis

Analysis 2 | Exterior **Envelope Prefabrication**

Analysis 3 | Water Drainage Recycling

Conclusions and Recommendations

Acknowledgements

- Mechanical Breadth
- Cost

CF to Gallon Factor | 7.48 CF/G

$$86,64 * \left(\frac{3.81}{12}\right) * (.9) * 7.48 = 185,185.2 Gallons per month$$

= 2,222,222.4 Gallons per year

MAXIMUM FLOW Courtesy of the International Plumbing Code RATE PLUMBING FIXTURE OR FIXTURE FITTING OR QUANTITY^b 2.2 gpm at 60 psi Lavatory, private 0.25 gallon per Lavatory, public (metering) metering cycle Lavatory, public 0.5 gpm at 60 psi (other than metering) 2.5 gpm at 80 psi Shower heada Sink faucet 2.2 gpm at 60 psi 1.0 gallon per flushing Urinal cycle 1.6 gallons per flushing Water closet

Water Demand

Toilets | 120 flushes per day **Urinals** | 75 flushes per day Urinals | 1.0 gallon per flush **Toilets** | 1.6 gallons per flush (46 * 120 * 1.6) + (10 * 75 * 1.0) = 9,582 Gallons per day= 239,550 Gallons per month= 2,874,600 Gallons per year

Introduction

Project Background

Analysis 1 | Site Logistics Analysis

Analysis 2 | Exterior **Envelope Prefabrication**

Analysis 3 | Water **Drainage Recycling**

> Conclusions and Recommendations

Acknowledgements

- Mechanical Breadth
- Costs

• Overview of System

NPSH 15 ft Control Head 25.6 Control Head Hz 30.31

Mechanical Breadth

Pump

Total Dynamic Head Calculator

Pump Flow Rate	Pipe Diameter(ID)	Pipe Length	Differential	y of www.pum Pipe Material	ipworld.com Total Dynamic Head(TDH)
US GPM ‡	in. ‡	ft. ‡	ft. ‡	New Steel ‡	ft. ‡
200	4	600	40		64.27855981850
	Com	pute Total D	ynamic Head(TDH	Reset	

Speed Pump

Pump | 5 HP Selfsensing Variable

Pump Details

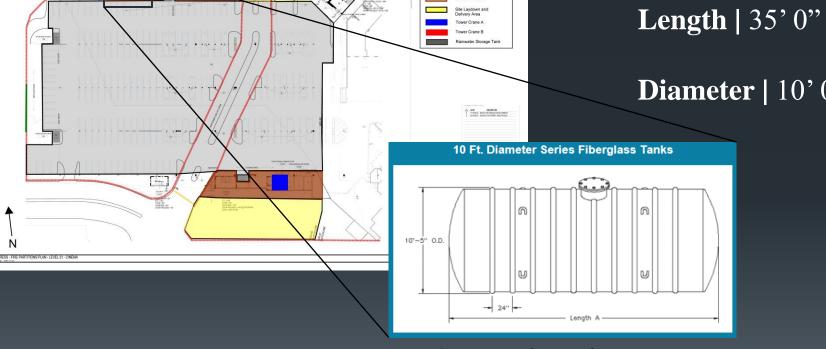
SKV/SKS3006-3600-5.00

Specifications

Eff 68% Flow: 200 **NOL HP** 5.00 Head: 64 RPM: 3600 Imp Dia.: 5.25 **Size:** 3 x 3 Design Hz 53.55

Courtesy of www.taco-hvac.com

Storage Tank


Key
Parking Garage

Nicholas Kline | Construction Option | AE Senior Thesis

Size | 20,000 gal

Diameter | 10' 0"

Courtesy of www.darcoinc.com

Costs

Nicholas Kline | Construction Option | AE Senior Thesis

Equipment Costs

Introduction

Project Background

Analysis 1 | Site Logistics Analysis

Analysis 2 | Exterior **Envelope Prefabrication**

Analysis 3 | Water Drainage Recycling

> Conclusions and Recommendations

Acknowledgements

- Overview of System
- Mechanical Breadth
- Costs

Estimated new piping | \$50,000

Estimated total system costs | \$81,630.00

Underground Tank Project Estimate

You are looking for an underground tank system to store 20,000 gallons of water.

Here is your fiberglass tank estimate.

10' Diameter 20,000 Gallon storage tank Included Accessories (Average) Included Shipping Included Total Estimated Cost \$31,630.00

Required Deposit (Balance COD) \$10,437.90 Lead Time: 7 to 9 weeks

Courtesy of www.darcoinc.com

Annual Water Savings | (\$6.76/1000G) * 2,222,222.4G = \$15,022.22

Water Costs

Domestic Water Annual Demand | (\$6.76/1000G) * 2,874,600G = \$19,432.29

Total Annual Cost | \$19,432.29 - \$15,022.22 = \$4,410.07

7 year system payback period

			Original Ann	ual Water Cos	its		
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7
Costs	\$ (19,432.29)	\$(19,432.29)	\$(19,432.29)	\$(19,432.29)	\$(19,432.29)	\$(19,432.29)	\$(19,432.29)
Savings	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	
			New Annua	al Water Costs	3		
	Year 1	Year 2	New Annua Year 3	al Water Costs Year 4	Year 5	Year 6	Year 7
Costs			Year 3	Year 4	Year 5	Year 6 \$ (4,410.07)	
Costs Savings	\$ (86,040.07)	\$ (4,410.07)	Year 3	Year 4 \$ (4,410.07)	Year 5 \$ (4,410.07)	\$ (4,410.07)	

Conclusions

Nicholas Kline | Construction Option | AE Senior Thesis

Introduction

Project Background

Analysis 1 | Site Logistics Analysis

Analysis 2 | Exterior **Envelope Prefabrication**

Analysis 3 | Water Drainage Recycling

Conclusions and Recommendations

Acknowledgements

Analysis 1 | Site Logistics Analysis

Total Original Costs | \$1,848,390.00 **Total New Costs** | \$1,314,992.00

Total Savings | \$533,398.00

Estimated Owner Savings | \$1,000,000.00

Original Schedule Duration | 538 workdays

New Schedule Duration | 497 workdays

Total Savings | 41 workdays or about 2 months

Estimated Owner Savings | \$500,000.00/month

Prefabricated Costs | ~ \$3,191,843.00

Original Schedule 122 workdays

Analysis 2 | Exterior Envelope Prefabrication

Original Costs | ~ \$2,453,353.00

Prefabricated Schedule 37 workdays

Total Added Costs | \$738,490.00

Total Savings | 85 workdays

Analysis 3 | Water Drainage Recycling

System Costs | ~ \$80,000 Water Cost Savings | ~ \$15,000/year

7 year payback period

Recommendations

Nicholas Kline | Construction Option | AE Senior Thesis

Introduction

Project Background

Analysis 1 | Site Logistics
Analysis

Analysis 2 | Exterior Envelope Prefabrication

Analysis 3 | Water Drainage Recycling

Conclusions and Recommendations

Acknowledgements

Analysis 1 | Site Logistics Analysis

Yes recommended | Benefits to both cost and schedule

Analysis 2 | Exterior Envelope Prefabrication

recommended | Costs outweigh schedule improvements

Analysis 3 | Water Drainage Recycling

| | Water Cost Savings

Acknowledgements

Nicholas Kline | Construction Option | AE Senior Thesis

Introduction

Project Background

Analysis 1 | Site Logistics Analysis

Analysis 2 | Exterior Envelope Prefabrication

Analysis 3 | Water Drainage Recycling

Conclusions and Recommendations

Acknowledgements

Academic Acknowledgements

PENNSTATE

1855

Mr. Ray Sowers | CM Faculty Advisor

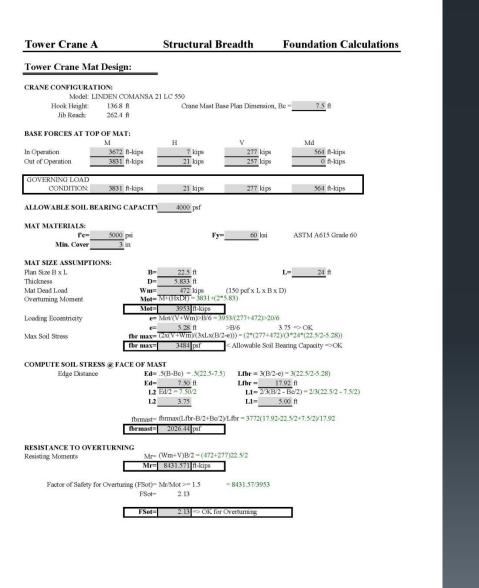
Prof. Kevin Parfitt

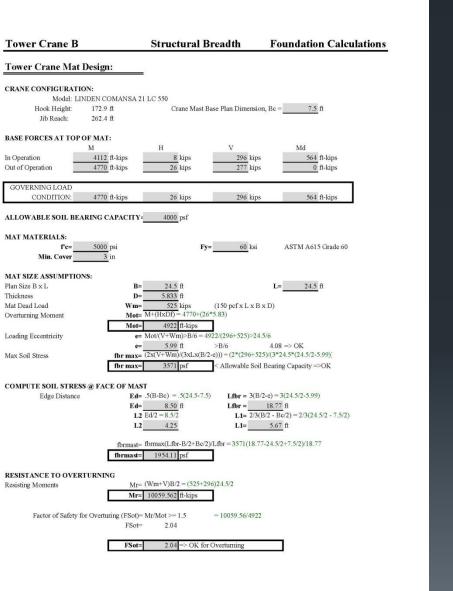
Prof. Charles Cox

Prof. Moses Ling

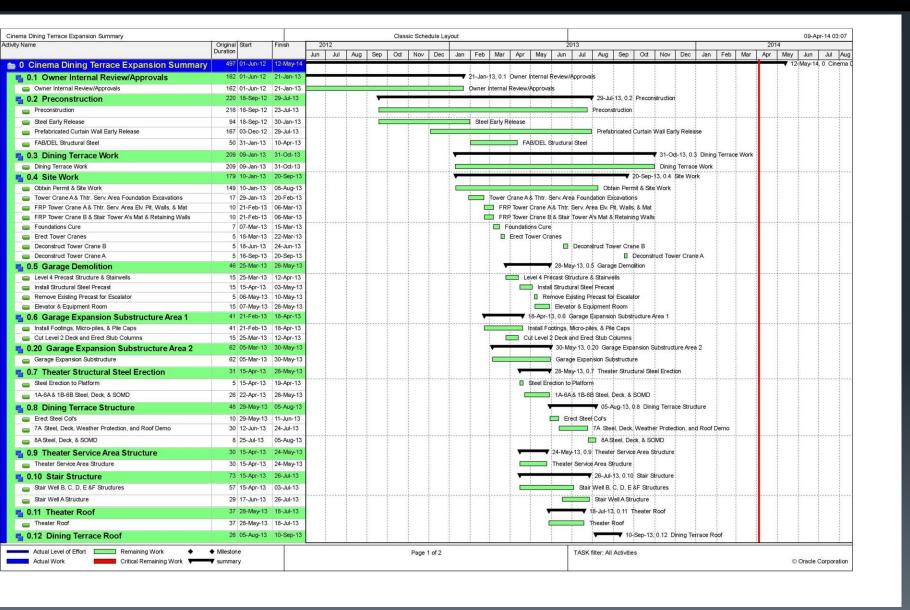
Penn State AE Faculty

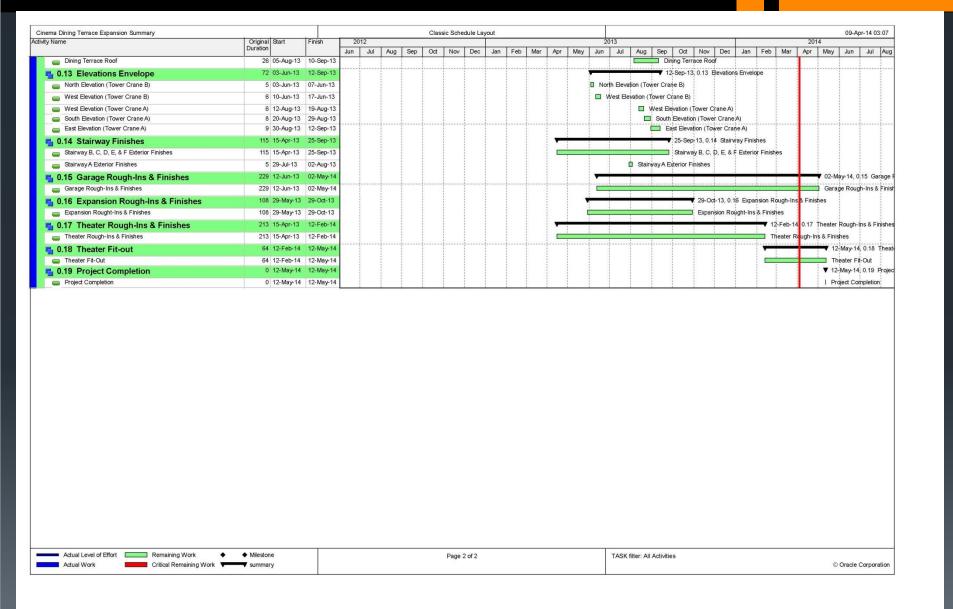
Special Thanks
The Whiting-Turner Project Team


My Family and Friends



Structural Breadth


Appendix



New Project Schedule

Appendix

